行星齒輪傳動原理及結構:
我們熟知的齒輪絕大部分都是轉動軸線固定的齒輪。例如機械式鐘表、普通機械式變速箱、減速機,上面所有的齒輪盡管都在做轉動,但是它們的轉動中心(與圓心位置重合)往往通過軸承安裝在機殼上,因此,它們的轉動軸都是相對機殼固定的,因而也被稱為"定軸齒輪傳動。
有定必有動,對應地,有一類不那么為人熟知的稱為"行星齒輪"的齒輪,它們的轉動軸線是不固定的,而是安裝在一個可以轉動的支架(藍色)上(圖中黑色部分是殼體,黃色表示軸承)。行星齒輪(綠色)除了能象定軸齒輪那樣圍繞著自己的轉動軸(B-B)轉動之外,它們的轉動軸還隨著藍色的支架(稱為行星架)繞其它齒輪的軸線(A-A)轉動。繞自己軸線的轉動稱為"自轉",繞其它齒輪軸線的轉動稱為"公轉",就象太陽系中的行星那樣,因此得名“行星齒輪”。
也如太陽系一樣,成為行星齒輪公轉中心的那些軸線固定的齒輪被稱為"太陽輪",如圖中紅色的齒輪。在一個行星齒輪上、或者在兩個互相固連的行星齒輪上通常有兩個嚙合點,分別與兩個太陽輪發生關系。如右圖中,灰色的內齒輪軸線與紅色的外齒輪軸線重合,也是太陽輪。
軸線固定的齒輪傳動原理很簡單,在一對互相嚙合的齒輪中,有一個齒輪作為主動輪,動力從它那里傳入,另一個齒輪作為從動輪,動力從它往外輸出。也有的齒輪僅作為中轉站,一邊與主動輪嚙合,另一邊與從動輪嚙合,動力從它那里通過。
在包含行星齒輪的齒輪系統中,情形就不同了。由于存在行星架,也就是說,可以有三條轉動軸允許動力輸入/輸出,還可以用離合器或制動器之類的手段,在需要的時候限制其中一條軸的轉動,剩下兩條軸進行傳動,這樣一來,互相嚙合的齒輪之間的關系就可以有多種組合:
單排行星齒輪機構的結構組成為例
(1)行星齒輪機構運動規律
設太陽輪、齒圈和行星架的轉速分別為n1、n2和n3,齒數分別為Z1、Z2、Z3;齒圈與太陽輪的齒數比為α。則根據能量守恒定律,由作用在該機構各元件上的力矩和結構參數可導出表示單排行星齒輪機構一般運動規律的特性方程式:
n1+αn2-(1+α)n3=0 和Z1+Z2=Z3